
SECTION 2 

STEPS IN DATA ANALYSIS OF TOF DIFFRACTION DATA 
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2.1 INTRODUCTION 

The initial goal of the experimenter is to obtain the TDCS of his 

or her sample. The success of subsequent analysis to g(r) or partial 

structure factors depends critically on obtaining the TDCS accurately. 

A number of corrections are required to the measured data: these are 

straightforward to apply but nonetheless easy to get wrong. Four main 

sources of error can be identified: 

(i the experimenter doesn't have complete 
information about his or her sample, e.g. 
dimensions, densities, cross sections, etc.; 

(ii) incorrect data analysis procedures are used; 

(iii) the detectors are not sufficiently stable; 

(iv) sample environment equipment introduces 
unexpected backgrounds and sample positioning 
errors. 

The last two causes require action by the instrument scientists, but 

there is little or nothing that can correct for poorly characterised 

samples or incorrect data analysis procedures. 

Occasionally on LAD we have achieved absolute accuracies of 1%, 

accuracy being measured by the difference between the measured high Q 

limit of the TDCS and the expected high Q limit. With care this 

accuracy could be achieved routinely. However at present we typically 

obtain accuracies on the order of 5%, and in the majority of cases the 

reason for this is either because the sample is poorly characterised or 

because the data analysis is inadequate. 

With the exceptions of sections 2.9 and 2.11, which concern the 

estimation of inelasticity corrections and transforming the final 

result to g(r), we believe the methods of analysis of diffraction data 

from liquids and amorphous samples are well understood and routine. In 

the sections which follow we have attempted to describe the correct 

sequence of steps. 
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As seen in section 1.1, the scattered intensity is measured as a 

function of time-of-flight which in turn is proportional to wavelength. 

The data can also be presented as a function of wave vector, k, wave 

vector transfer, Q, or energy, E, by using the relationships (1.1.5) to 

apply the appropriate rescaling. The choice is subject to the 

preference of the experimenter, although the Q representation is the 

most common as it relates to the reciprocal space in which the 

structure factor is defined, equation (1.2.1). Therefore we shall use 

the Q representation here. Thus if the sample is very small so that the 

effects of attenuation and multiple scattering are negligible, the 

detected count rate would be proportional to the incident flux, @(ke) 

the TDCS of the sample, C(Qe), the detector solid angle, AR, and the 

detector efficiency, Ed(ke): 

where N is the number of scattering units in the neutron beam, and Qe = 

2kesin0. The incident flux and detector efficiency are represented here 

as a function of ke to emphasize that they are not a function of the 

scattering angle of the detector. 

Equation (21.1) is an idealized count rate: the first correction 

that must be applied is for detector deadtime. 

2.2 DEADTIME CORRECTIONS 

No matter how well made a detector is always "dead" for a short 
3 while after a neutron event has occurred. For a He tube this DEADTIME 

might be 3us, whilst for a glass scintillator it is perhaps 250ns, 

before another event can be recorded. The zinc sulphide detectors will 

have a deadtime of betweeen 2 and 10 us, depending on how they are set 

up. Normally the correction for deadtime is a few percent and so can be 

made by a simple formula. Suppose T is the deadtime in us for a 

detector. First consider the case where the time channel is broad 

compared to the deadtime. If Rm is the measured count rate in the time 
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channel (in cts/vS), then the detector is dead for a time 

where A is the width of the time channel in US. Hence the count rate, 

R, which would have been measured if the detector had zero deadtime, is 

greater than Rm in proportion to the time that the detector is dead: 

At the other extreme if the time channels are narrower than the 

deadtime, then some of the previous time channels may contribute to the 

deadtime in a particular channel. For example if channels n to m 

contribute to the deadtime in channel m, then the length of time 

channel m is dead is given by 

where A and R are the channel width and count rate in channel j 
j j 

respectively. The limits of j are determined by inspection. This 

correction is used in the same way as before, with Dm in place of D in 

(2.2.2). 

A subtlety occurs in practice that renders, the correction more 

complicated. When many detectors exist it is not practical to have a 

separate input for each detector into the DAE. Instead an ENCODER is 

used to create a binary address which describes which detector fired. 

If the deadtime of the encoder is longer than that of the detector, 

then it is the encoder's deadtime which determines the detector 

deadtime. Moreover since the encoder can process only one event at a 

time, - all the detectors that feed into that encoder are effectively 

dead when any one detector fires. Therefore in this situation the sum 

in (2.2.3) should include a sum over all channels which feed into a 

decoder. In that case if R is the count rate in time channel j and 
j ,k 

encoder channel k, then the detector deadtime is given by 
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and the sum over k is over all detector channels that feed into the 

encoder. In the situation when (2.2.4) applies A. is the encoder's 
J 

deadtime, NOT the detector's. Hence even though the deadtime for an 

individual detector may be small, the grouping of say 50 detectors into 

an encoder results in a 50-fold enhancement in the count rate as far as 

deadtime is concerned. So the deadtime correction could be much larger 

than might be apparent from the count rate in an individual detector. 

2.3 NORMALIZING TO THE INCIDENT BEAM MONITOR 

Having corrected I(Qe) for deadtime, the next stage is to divide 

out the incident spectrum, which is measured by means of a MONITOR 

detector placed in the incident beam before the sample. The spectrum is 

divided out at this stage because small variations in moderator 

temperature and proton beam steering can modify the energy dependence 

of the spectrum from time to time at the 1-2% level. Since the 

calibration run must be performed before or after the sample run, it 

will only give a reliable result if the dependence on the incident 

spectrum is removed at the end of each run. The count rate in the 

monitor detector, which of course must also be corrected for deadtime, 

is proportional only to the incident spectrum and the monitor 

efficiency: 

Thus when used to normalize the scattered neutron count rate, a 

NORMALIZED count rate is obtained: 
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A second measurement which is made at the same time as the 

scattered count rate from the sample is the fraction of neutrons 

transmitted by the sample. This number is monitored by a TRANSMISSION 

MONITOR, with efficiency Et(ke), placed after the sample. Again this 

fraction cannot be measured directly, but must be determined by 

ratioing different runs, e.g. with and without sample. If It(ke) is the 

count rate in the transmission monitor, then this count rate is 

proportional to the incident flux, the transmission monitor efficiency 

and the TRANSMISSION of the sample, T(ke), which will be defined in the 

next section and is dependent on the total neutron cross section of the 

sample. Hence when normalized to the incident monitor, the transmitted 

intensity is given by 

The transmission monitor is used to provide information on the neutron 

cross section and density of the sample: it can often confirm that the 

sample is what it is supposed to be. 

There will then be a set of NRM files for every detector or 

detector group, and a MON file, for every run, whether it be sample, 

container, vanadium (calibration) or background. The stages covered by 

sections 2.2 and 2.3 are obtained by running the NORM program of 

section 3.6 

2.4 MEASURING THE NEUTRON CROSS SECTION 

a) The Total Neutron Cross Section 

Neutron cross sections arise from two primary processes: scattering 

and capture. Provided there are no nuclear resonances in the energy 

region of interest, the probability for capture is inversely 

proportional to neutron velocity, i.e. proportional to neutron 

wavelength, and the constant of proportionality, usually defined for 

2200m/s neutrons ( A  = 1.8A), is called the CAPTURE CROSS SECTION, ua. 
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There is a value of ua for every nucleus, although in many cases it is 

quite small or zero. 

The SCATTERING CROSS SECTION, %(A), on the other hand has no such 

simple dependence on energy or wavelength, because it represents the 

integral of the DIFFERENTIAL SCATTERING CROSS SECTION, du/dQ at a 

particular wavelength over all scattering angles: 

us(X) = -J$X) dQ = 4n sin 28 dB I 
As an example of the application of this result we will assume the 

static approximation applies and that the liquid under inverstigation 

is a hard sphere fluid of reduced density pu3 = 0.5, where u, the hard 

core diameter, is 3.142A. In that case S(Q) is known exactly in the 

Percus-Yevick approximation, and so (2.4.1) can be integrated 

numerically for all wavelengths, using 

where b is the bound scattering length of the fictitious nucleus. The 

result is shown in figure 2.1: it will be seen that the scattering 

cross section for a material with structure will certainly deviate from 

the bound value. In particular the scattering cross section will 

display a similar structure to that seen in the differential scattering 

cross section. 

For light atoms such as hydrogen and deuterium the consequences are 

quite drastic: the differential cross section falls dramatically with 

scattering angle at all but the longest neutron wavelengths, and the 

shape of the fall, which depends on the details of S(Q,u), also varies 

with energy. Thus at low energies the neutron can excite only 

diffusional type motions, while at high energies the neutron can excite 

all possible modes, including dissociation of molecules if present. 

Thus the scattering cross section must vary between its so-called 

"BOUND" and "FREE" values as we go from low energy to high. The llboundw 
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values are those quoted in tables of neutron scattering lengths such as 

the compilation by Koester et. al. [14] or Sears 1151 and correspond to 

the case of an immovable nucleus: they are essentially nuclear 

parameters. The corresponding l1freel1 values at high energies can be 

computed by multiplying the llboundll cross sections by the ratio 

where A is the mass of the nucleus in question. This has the value 0.25 

for hydrogen and 0.44 for deuterium, which tells us to expect a large 

fall in the scattering cross section of these materials with increasing 

energy. Such a fall is readily visible in the transmission data from 

hydrogen containing samples. For heavy atoms on the other hand this 

factor is close to unity and so within the likely accuracy of the 

transmission measurement is not significant. 

In practice it is not possible to ever obtain the true bound cross 

section for a liquid containing light atoms since the low energy cross 

section is intimately related to the details of S(Q,w) at small Q and 

o. However the free cross section should appear as the asymptotic limit 

as X * 0, since then all neutron capture processes have gone to zero. 

Figure 2.1 also shows a second quantity, the TOTAL NEUTRON CROSS 

SECTION, at (A), where 

In this case it has been assumed that the fictitious material has a 

capture cross section u = 0.4 at ~=i.8A. It can be seen that the a 
approximation of treating the total cross section as a sum of a 

constant plus linear term in X will be inadequate for accurate work at 

long wavelengths. 

If nuclear resonances are present in the total cross section then 

the above treatment must be modified. A nuclear resonance occurs when 

the neutron excites the nucleus to an excited state, and so is 
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(slightly) analogous to an absorption edge in X-ray scattering. However 

the possible nuclear states are quite complicated in general and can 

be accompanied by several processes, including the emission of a y 

photon. Usually both scattering and capture are not simple at a 

resonance, and full treatment of the effects of this on the data 

analysis are beyond the present purpose, and certainly are not included 

in any of the correction routines. At present the only recourse is to 

ignore the energy regions where resonances occur and hope that there is 

sufficient angular coverage that all Q values can be obtained away from 

a resonance. Figure 2.2 shows the measured total cross section for a 

solution of 148~m-perchlorate in D20 Note the strong resonance at X = 
lA, corresponding to a nuclear resonance in a 14'sm impurity. This 

resonance was so broad that analysis of these data to TDCS was 

impossible. Appendix E lists the more commonly occurring resonances. 

b) Measuring the Neutron Cross Section 

We have seen above that the total cross section depends on the 

STRUCTURE and DYNAMICS of the sample, which in turn relates to the 

thermodynamic state of the sample. Therefore it strictly has to be 

measured for each and every sample, and this is why a transmission 

monitor is placed after the sample. In practice it is difficult to 

measure the total cross section on an ABSOLUTE scale with the necessary 

precision, so the transmission monitor is used to obtain the ENERGY 

DEPENDENCE of the total cross section, with absolute values obtained by 

reference to the known free and bound values at short and long 

wavelengths. Note that using a separate experiment to measure 

transmissions is very time consuming and not necessarily useful since 

it is not always possible to reproduce the exact conditions of the 

experiment at a later time. 

If the sample is a flat plate which uniformly covers the beam then 

the TRANSMISSION of the sample is given simply by 
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where p is the number density and L is the neutron flight path within 

the sample. Hence if T(ke) can be obtained from monitor ratios as 

described in section 2.3 then it is a trivial inversion to obtain ut. 

For any other shape of sample however the flight path through the 

sample is a function of position within the beam. Figure 2.3 shows the 

geometry of the problem in this case.. If x measures the perpendicular 

distance from one edge of the beam then L becomes a function of x and 

the transmission in this case can be written as 

where W is the width of the beam. In this case there is no simple 

inversion to ut, which has to be obtained by trial and error. However 

if a Newton-Raphson technique is used to do this convergence to a 

solution is quite rapid. Further efficiency can be gained by noting 

that only a finite number of terms in the exponential are needed. 

Writing v = pu we see that 
t ' 

where 
/ w 

The latter integrals are dependent only on the shape of the sample and 

not on neutron energy and so need only be evaluated once. 

If the sample is contained in a holder then the monitor ratio that 

is used is the ratio of sample plus can to can alone. In that case the 

measured transmission is given by 
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where the capital suffix S applies to the sample and C applies to the 

container. Similar expansions of the top exponential term can be used 

as before. However the values of pC must be supplied separately or 

obtained in a separate transmission experiment on the container alone. 

Finally note that if the beam profile is not uniform a simple 

modification of the above formulae is needed: because the profile 

function can be included in the moments (2.4.7) it does not lead to any 

increase in computing time. 

2.5 ATTENUATION AND MULTIPLE SCATTERING CORRECTIONS 

Much of the underlying methodology for calculating ATTENUATION and 

MULTIPLE SCATTERING corrections has been covered in numerous previous 

publications and so will not be repeated here. Although there are a 

number of approaches to the calculation, the formalism of Soper and 

Egelstaff [16], which uses numerical integrations to estimate 

corrections for the cylindrical geometry, is used here, because it is 

written in a sufficiently general form to allow corrections for 

furnaces and radiation shields if they are sufficiently absorbing or 

scattering to require a separate correction. These latter corrections 

will be the subject of the next section. 

The most common case is that of a sample contained in a holder. In 

that case two measurements are needed: one for the sample plus can, 

ISC(ke), and one for the can alone, IC(ke). These two quantities are 

each affected by attenuation and multiple scattering so our simple 

definition (2.1.1) has to be modified for the general case: 
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Here NS and NC are the number of atoms in the sample and container 

respectively, while AS,SC, AC,SC and A are the usual Paalman and 
C?C 

Pings [17] attenuation factors. For example A S,SC is the attenuation 

factor for scattering in the sample and attenuation in the sample plus 

container. The quantities MSC and MC are the total multiple scattering 

differential scattering cross sections for sample plus can and can 

alone respectively. Note that the multiple scattering terms cannot in 

general be included in first scattering terms because they are not 

linear in NS and N Both attenuation and multiple scattering terms are C ' 
functions of neutron energy by virtue of the energy dependence of the 

scattering and capture cross sections. 

The attenuation factors depend only on the sample geometry and the 

total neutron cross section and so can be evaluated exactly in the 

static approximation, within the limits of numerical precision. 

On the other hand the multiple scattering terms can never be 

evaluated very accurately since in principle they require detailed 

knowledge of the sample's structure (and dynamics if the inelastic 

scattering is significant). The method of calculation normally employed 

makes use of the measured total transmission cross section to give the 

scattering cross section at each neutron energy, but then assumes the 

scattering at this energy to be isotropic with scattering angle. This 

is called the ISOTROPIC approximation. (This is NOT the same as 

assuming that the multiple scattering is isotropic, an approximation 

introduced by Blech and Averbach 1181 which is not needed in practice.) 

Sears [I91 has described how the isotropic approximation can be 

improved although direct calculation with a Monte Carlo algorithm which 

includes the measured TDCS is probably the best way to cope with 

multiple scattering from thick samples. Given the speed of modern 

computers this is not an unreasonable approach. Howells has a program, 

ELMS, (Elastic Multiple Scattering) which does this and it can be made 

available if there is sufficient demand. 
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There is a general consensus that the isotropic approximation is 

expected to be acceptable if the sample scatters less than -20% of the 

incident beam, although there has never been a quantitative study of 

the size of sample at which this approximation starts to introduce a 

serious systematic error in the measured structure factor. Clearly it 

greatly assists the multiple scattering problem if the container can be 

made of an incoherent scatterer, such as vanadium or 

zirconium-titanium, or of an amorphous material, such as silica, since 

Bragg peaks introduce a severe difficulty to any quantitiative multiple 

scattering calculation. 

In summary, to be confident that multiple scattering will not 

introduce too large a systematic error it is a useful rule of thumb to 

ensure that the sample scatters between 10% and 20% of the incident 

neutron beam. 

2.6 FURNACE CORRECTIONS 

If the sample and container are in a furnace and the furnace 

element contributes significantly to the attenuation and scattering 

processes then three measurements are needed: sample plus can plus 

furnace, ISCF(ke), empty can plus furnace, ICFke), and furnace alone, 

IC(ke). These three quantities are related to the corresponding 

differential cross sections by: 
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The attenuation factors have the same definition as before, e.g. 

As, SCF is the attenuation factor for scattering in the sample and 

attenuation in the sample, can and furnace. Similarly the multiple 

scattering cross sections have an equivalent definition as before. N~ 
is the number of furnace atoms in the incident beam. 

2.7 VANADIUM OR STANDARD SAMPLE CALIBRATION 

A unique characteristic of neutron scattering is the ability to 

perform an independent estimate of the instrumental calibration. This 

calibration consists of the unknown quantities, either 

in sections 2.1, 2.5 and 2.6 above, or 

Ed(ke) 
F2(ke) = ASZ 

Em(ke) 

in section 2.3. With these definitions we can for example rewrite 

equations (2.5.1) and (2.5.2) which become, after normalizing to the 

monitor: 

Estimation of these calibration constants is usually achieved with a 

standard vanadium sample because vanadium has a largely incoherent 

cross section and so it is believed that the differential cross section 

for vanadium can be estimated reasonably accurately, an assumption 

which of course is difficult to check! As described in section 2.9 the 

inelasticity correction has two principal terms, one relating to 
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scattering angle, the other proportional to temperature and inversely 

proportional to neutron energy, and since energy is being varied in a 

TOF experiment it is crucial to estimate this latter term correctly. 

Figure 2.4 shows the estimated single atom differential cross section 

at 20° scattering angle for a free vanadium nucleus at two 

temperatures. At the time of writing experiments are planned on LAD to 

determine if the estimated temperature dependence is indeed observed. 

The normalized spectrum from vanadium is defined by 

The quantity in square ([...I) brackets is the vanadium differential 

cross section which is estimated using exactly the same methods as in 

the previous section. This leads to a VANADIUM CALIBRATION, CALV(Qe), 

where 

In fact scattering from vanadium exhibits the usual statistical 

noise plus weak Bragg reflections due to the small coherent scattering 

amplitude. Since the data from the sample must be divided by CALV it is 

obviously undesirable to transfer either effect to the sample data, so 

an expansion in terms of Chebyshev polynomials is fitted to NRMV with 

zero weighting of points in the region of Bragg peaks. This has the 

effect of smoothing out the Bragg peaks and noise without introducing 

any appreciable artifacts. However it is clearly important to check 

that this smoothing has in fact removed only the noise from NRMV and 

none of the underlying structure. In any case whether to smooth or not 

is an option which can be overridden if needed. The computer programs 

associated with this section are described in section 3.9. 
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2.8 BASIC ALGORITHM TO DETERMINE DIFFERENTIAL CROSS SECTION 

All of the main quantities needed to calculate the differential 

cross section (DCS) from the TOF diffraction data of the sample have 

now been described, and the algorithm ANALYSE (see section 3.10) is 

used to perform this operation. The stages are described in sequence 

for the case of a sample held in a can. Note that the arrow * is used 
to indicate that the result of an operation on the left hand side is 

placed in the quantity on the right. The symbol TOTAL applies to the 

total scattering, SINGLE applies to single scattering, and the suffixes 

S, C and B refer to sample, can and background. 

1) Subtract background 

TOTALSC(Qe) = mMSC(Qe) - mMB(Qe) 

TOTALC(Qe) = mMC(Qe) - mMB(Qe) 

2) Normalize to calibration 

TOTALSC(Qe) * TOTALSC(Qe) /CALV(Qe) 
TOTALC(Qe) * TOTALC(Qe)/CALV(Qe) 

3) Subtract multiple scattering 

SINGLESC(Qe) = TOTALSC(Qe) - MSC(ke) 

SINGLEC(Qe) = TOTALC(Qe) - MC(ke) 

4) Apply absorption corrections 

5) Divide by number of atoms in sample 
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If the furnace correction is being applied then the following modified 

sequence is used:- 

1) Subtract background 

TOTALSCF (Q,) = mMSCF ( Qe ) - m M B  ( Qe ) 

TOTALCF(Qe) = mMCF(Qe) - mMB(Qe) 

TOTALF(Qe) = MMF(Qe) - NRMB(Qe) 

2) Normalize to calibration 

TOTALSCF ( Qe * TOTALSCF ( Qe /CALV( Qe ) 
TOTALCF(Qe) * TOTALCF(Qe)/CALV(Qe) 
TOTALF (Q,) * TOTALF (Qe) /CALV(Q,) 

3) Subtract multiple scattering 

SINGLESCF(Qe) = TOTALSCFF(Qe) - MSCF(ke) 

SINGLEcF (Q,) = TOTALCF ( Qe) - MSC(ke) 

SINGLEF(Qe) = TOTALF(Qe) - MF(ke) 

4) Subtract furnace from sample and can 

5) Apply absorption corrections 

- SINGLEC(Qe) SCF 
A ~ ,  CF 1 

H S , SCF 

5) Divide by number of atoms in sample 
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2.9 INELASTICITY (PLACZEK) CORRECTIONS 

Equations 1.2.9, 1.2.11 and 1.2.12 serve to define the inelasticity 

correction, P(Qe,6) in a TOF diffraction experiment: P(Qe,B) represents 

the difference between the static approximation F(Q) and the TDCS, 

C(Qe). Strictly speaking to obtain P(Qe,B) one needs to know F(Q,m) 

which preempts the need for a diffraction experiment since then the 

static structure factors (1.3.4) would be obtainable by direct 

integration of F(Q,o). Obviously this is an impractical proposition, 

mostly because of the time that would be required in measuring the 

complete dynamic structure factor. 

However in 1952 Placzek [5] showed that for nuclei much more 

massive than the neutron the correction adopts a form which is 

essentially independent of the detailed dynamics, and is related only 

to the nuclear mass, the sample temperature, the incident neutron 

energy, and the geometry and efficiency of the neutron detection 

process. Moreover at neutron energies well above those of any bound 

states that occur in the sample he showed that the correction to the 

interference term S (Q) is zero to first order. These conclusions 
aB 

arose from the fact that the first two moments of S(Q,m) can be 

estimated more or less exactly: 

and 

Here (2.9.1) and (2.9.3) are exact results, but (2.9.2) strictly only 

applies to a classical fluid. 
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Unfortunately Placzekts results cannot always be applied directly 

to thermal neutron diffraction because the conditions under which they 

apply are often not obtained. In particular the sampling factor 

(equation 1.2.10) rapidly drops to zero as k' becomes less than k. 

Hence as in the fixed wavelength reactor experiment the scope for 

exciting high vibrational levels in a molecule depends on the incident 

energy. There is an extensive literature on the attempts to modify the 

original Placzek approach to include the cases where the system is only 

partly excited by the neutron. See for example the papers by Powles 

[6-111 and Egelstaff [4,12,13] and references therein. All of these 

involve lengthy algebra, and while there seems to be general agreement 

in the case of the self scattering for an atomic fluid the correct form 

of the terms for molecules, which involve a Q-depedent effective mass 

is still disputed. The advantage of the Placzek type of expansion is 

that in enables one to understand by inspection the effect of various 

instrument parameters on the inelasticity correction, in particular the 

flight path ratio, sample temperature, detector efficiency, and 

incident spectrum shape,. 

As an example below is quoted the Egelstaff [4] formula for the 

self scattering inelasticity correction for an atomc fluid of nuclear 

mass M at temperature T, for a 1/E incident spectrum, at incident enrgy 

Eo : 

where 
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2 and y = sin 8, m = mass of neutron, a = 1/R = L/Lt, and A and B are 

detector constants: 

with 

Ed(ke) = 1 - exp(-o/ke) 

and E a detector constant which determines the efficiency. Further 

terms are needed in the Maxwellian region. 

This formula gives the quantitative behaviour of the Placzek 

correction at large neutron energies, but also indicates qualitatively 

what will happen at all energies. In particular we see that the 

correction gets notably larger at low neutron energies, high 

temperatures, and small nuclear masses. Hence the often quoted maxim 

that the ideal diffraction experiment is performed at high energies and 

small scattering angles. The routine PLATOM described in Section 3.11 

uses a modification of the Powles [lo] formula derived by Howe, 

McGreevy and Howells [20]. Detailed comparison of this formula with the 

numerical methods described below shows some quantitative discrepencies 

which are not understood at the present time. 

An alternative to the Placzek expansion is to define a model 

neutron scattering law S(Q,o) which incorporates the properties defined 

in (2.9.1) and (2.9.2), or any alternative scattering laws which are 

know to represent S(Q,w) correctly in the region of (Q,s) space 

explored by experiment, and then perform the integral (1.2.9) 

numerically. This method is most useful when a particular scattering 
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law is known to apply, such as that for a diffusing particle or for a 

rigid molecular rotor, or when the nuclear mass is small: in all these 

cases the Placzek expansion is not helpful. Figure 2.5 shows a 

comparison between the numerical integration of the free particle 

S(Q,o) (ideal gas formula) and equation (2.9.4) for a nucleus of mass 

5 1  (vanadium) and scattering angle of 20'. Note that at this small 

angle the expansion formula gives good agreement with the numerical 

calculation: at larger angles such as 90' and 150° the agreement is 

much worse, although in every case the high Q limit is the same. Figure 

2.6 shows the numerical calculation for a mass 2 particle at two 

tempertures. A pronounced temperature effect is seen. Moreover the 

correction now has a clear hump at -2~- '  corresponding to the 

derivative of the incident spectrum. Results such as this can only be 

obtained by numerical integration. 

Two computer programs exist to perform these numerical 

integrations: PLACID calculates the Placzek correction for an ideal 

gas, i.e. treating the particle as free. The other program is called 

PLATOF and it allows the user to input a table of S(Q,o) values from a 

separate calculation. Both programs can be made available for general 

use if there is sufficient demand. 

2.10 MERGING THE DATA TO FORM THE STRUCTURE FACTOR 

Typically one will record the TDCS at several scattering angles in 

a TOF diffraction experiment. On LAD there are currently 14 groups of 

detectors, 7 on each side of the instrument. Which of these groups are 

to be combined requires a decision by the experimentalist. A typical 

approach might be as follows: 

a) Correct each angle for inelasticity effects, particularly in the 

self scattering. 

b) Plot all the spectra on top of each other 
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c) For each group choose a range of Q values over which this 

spectrum overlaps with at least one spectrum from a neighbouring group 

at higher or lower scattering angle, and ignore those spectra which 

clearly disagree with the others. Obviously this is a highly subjective 

point in the analysis, but if all has gone well with the experiment it 

should be fairly obvious where the overlaps occur. The object is to 

avoid combining different detector banks where there are clearly 

differences due to say not being able to perform the Placzek 

correction accurately, such as occurs with light atoms such as 

deuterium. 

d) Merge the selected spectra over the selected Q range, using the 

MERGE command, see section 3.12 and below. 

e) Finally perform any remaining normalizations as needed such as 

removing the incoherent scattering and dividing out the scattering 

cross section. The result should either be in the units of differential 

cross section (barns per steradian per atom/4n) or have dimensionless 

units as a structure factor, S(Q). 

The merging of spectra is achieved by weighting each spectrum with 

the intensity with which it was measured. The weighting function is 

obtained from the corrected intensity data of the vanadium sample 

contained in the quantity 

where the suffix j is used to label the jtth group of detectors. Hence 

if C.(Qe) is the measured differential cross section for the jtth 
J 

group, the merged differential cross section is obtained by forming the 

sum 
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This is achieved with the MERGE command, section 3.12 

2.11 ANALYSIS TO PAIR CORRELATION FUNCTION 

The inversion of the S(Q) data to pair correlation function, g(r), 

i.e. inversion of equation 1.3.2, can be done by trivial Fourier 

transform. Routines GTOS and STOG (see section 3.13) are available to 

do this, and will allow the inclusion of a window or modification 

function if needed. 

However such direct Fourier transforms will inevitably lead to 

spurious structure in the calculated distribution due to the finite 

extent and statistical noise present in the data. This has been the 

subject of a number of reports, including a preliminary one from the 

Rutherford Appleton Laboratory by Soper [21], which was presented at 

the ICANS-X meeting in October 1988. In this new method it is proposed 

to limit the fluctuations in r(g(r)-1) with increasing r to those that 

are compatible with the observed width of the peaks in S(Q). In this 

way the noise and truncation of the data are not reproduced in the 

simulated pair correlation functions, at the same time that excellent 

fits to the measured data are obtained. At the time of writing a full 

account of this technique has still to be prepared for publication, and 

the program, called MCGOFR, is not in a particularly user friendly 

form, so at presemt it must be run under careful supervision. Even so 

it is fully intended to make this program generally available to anyone 

interested in using it. The basic philosophy of the approach is 

described in Appendix C, which is a reproduction of the ICANS paper in 

full. 
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TITLE : Total hard sphere cross section 

0. 

Figure 2.1 Calculated scattering and total cross section for a hard 

sphere fluid of density = 0.5, with u=3.142. The fluid is assumed 

to have unit scattering cross section per atom, and the capture cross 

section is 0.4 at 1.8A. The crosses correspond to a structureless fluid 
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TITLE : Sm148 perchlorate in D20 

0 1 2 3 4 5 
wavelength (Angstroms) 

Figure 2.2 Measured transmission cross section for a solution of 

148~m-perchlora te in D20 Note the pronounced neutron resonance near 

X=IA which arises from a 14'sm impurity. Higher energy resonances are 

visible at shorter wavelengths. 
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Figure 2.3 Geometry of transmission problem for an arbitrary shaped 

sample 
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TITLE : Placzek correction for vanadium at 20 deg. 

Figure 2.4 Calculated TOF recoil correction (l+P) for a free vanadium 

nucleus at two temperatures: 20K and 300K, and at a scattering angle of 

20'. Note the large temperature effect at small Q values. 
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TITLE : Vanadium Placzek correction at 20 deg. 

DOTS: NUMERICAL INTEGRATION 

LINE: EGELSTAFF'S FORMULA 

0 
n 
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0 1 2 3 4 5 6 7 8 9 10 
Q (Angstrom**-1) 

Figure 2.5 Comparison of numerical calculation of recoil correction for 

a vanadium nucleus at T=300K and scattering angle 20°, with Egelstaffts 

approximate formula, equation (2.9.4), which does not have the correct 

spectral dependence at small Q. Even so it gives good agreement at all 

Q values 
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T I T L E  : Placzek correction for deuterium at 20 deg. 

Figure 2.6 Recoil correction for a free deuterium atom at 20K and 300K. . 

The scattering angle is 20°. Note again the large temperature effect at 

small Q, and that a pronounced structure appears due to the substantial 

energy transfers that take place in the scattering process, 
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